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1 Introduction: the discriminant and its Severi strata

Two of the most basic invariants of a plane curve singularity (C, 0) are its Milnor number µ and
its delta invariant δ. If f : (C2, 0) → (C, 0) is a holomorphic map defining (C, 0) = f−1(0), then
µ(C) is the dimension of the jacobian algebra OC2,0 /Jf and equals the dimension of the vanishing

cohomology. If n : C̃ −→ C denotes the normalisation of (C, 0), then δ(C) is the dimension
n∗OC̃ /OC and equals the number of double points appearing in a generic perturbation of the map
n. These invariants are related by the relation

µ = 2δ + r − 1

where r denotes the number of branches of (C, 0). The number µ also appears as the num-
ber of parameters of an Re miniversal deformation F : (C2 × Cµ, 0) → (C, 0) of the function
f : (C2, 0) → (C, 0) defining (C, 0). The restriction π : X := F−1(0) → S = (Cµ, 0) is a versal
deformation of the plane curve singularity (C, 0). The fibre Cu over u ∈ S is the curve defined by
zero level of the deformed function fu := F ( , u) and discriminant D ⊂ S is the set of parameter
values u for which the fibre Cu is singular. This set is stratified by the types of singularities that
appear in the fibres. In this paper we will focus on the so-called Severi strata, where the sum of
the delta-invariants add up to a value ≥ k:

D(k) = {u ∈ S :
∑
p∈Cu

δ(Cu, p) ≥ k}

Clearly D(0) = S and D(1) = D, and as D(i) is contained in D(i− 1) we obtain a chain

D(δ) ⊂ D(δ − 1) ⊂ . . . ⊂ D(1) ⊂ D(0) = S

The smallest non-empty Severi stratum, D(δ), is the classical δ-constant stratum. The term “stra-
tum” here is a bit of a misnomer, since the Severi strata are not in general smooth.

It is a classical fact that any curve singularity with δ = k can be deformed into a curve with
precisely k A1 points, a fact which explains the name virtual number of double points for the δ-
invariant. Thus the set D(kA1) of parameter values u for which Cu has precisely k A1 singularities
is dense in D(k). Moreover, D(k) is smooth at such points, for there, by openness of versality, D(k)
is a normal crossing of k local irreducible components of the discriminant D. A curve singularity
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with δ-invariant k > 1 is also adjacent to a curve with one A2 singularity and k−1 A1 singularities.
Hence D(k)reg = D(kA1).

Recently, these strata have been the subject of several papers and their geometry appears to hide
some great mysteries. In [?] the multiplicity of D(δ) was shown to be equal to the Euler number
of the compactified Jacobian of (C, 0). This was further explored in [?], where multiplicities of
the other D(k) were related to the puntual Hilbert-schemes Hilbn(C, 0). Most surprisingly, these
invariants turn out to be related to the HOMFLY-polynomial of the knot in the 3-sphere defined
by (C, 0), [?].

If the curve (C, 0) is irreducible, its Milnor fibre Cu has just one boundary component, and it
follows that the dual of the intersection form Iu on H1(Cu;C) is non-degenerate. In [?], Givental’
and Varchenko used the period map associated to a non-degenerate 1-form η on the total space of
the Milnor fibration of F , together with the Gauss-Manin connection, to pull back the intersection
form from the cohomology bundle H ∗ over S to get a symplectic form Ω on S rD, and proved

Theorem 1.1. (a) Ω extends to a symplectic form on S, and

(b) the δ-constant stratum D(δ) in the discriminant is Lagrangian with respect to Ω.

Below we complement their results and show the following theorems.

Theorem 1.2. All of the Severi strata are coisotropic with respect to Ω.

The form Ω can also be used to obtain equations defining the Severi-strata. Let ∧kΩ be the
k-fold wedge product of Ω. Although it is a regular form, it can be considered as an element of
Ω2k
S (logD). Let Ik be the ideal generated by its coefficients with respect to a basis of Ω2k

S (logD).

Theorem 1.3. For k = 1, . . ., δ, the Severi stratum D(k) is defined by the ideal Iδ−k+1:

D(k) = V (Iδ−k+1).

Equivalently, if χ1, . . ., χµ form a basis for the free module of logarithmic vector fields ΘS(− logD),
then D(k) is defined by the ideal generated by the Pfaffians of size 2δ − 2k + 2 of the skew matrix
(Ω(χi, χj))1≤i,j,≤µ.

We do not know whether in general the ideals Ik are radical. Our calculations suggest that they
are, but we have not been able to show this.

Givental’ proved in [?] that for curve singularities of type A2k+1, D(δ) is Cohen-Macaulay and
it can be conjectured that this is always the case,[?]. In the first author’s PhD thesis, [?], 1.3
was used to show that D(δ) is Cohen Macaulay also for E6 and E8; we give the argument below.
Calculations using 1.3 suggest that the remaining Severi strata are Cohen-Macaulay in the case of
A2k, but show that for E6 the stratum D(2) is not Cohen-Macaulay .

In the process of proving these theorems we noticed that Ω determines a natural rank 2 maximal
Cohen-Macaulay module over the discriminant D, which seems to be of independent interest.

2 Preliminaries

Let f : (Cn+1, 0) → (C, 0) define an isolated singularity (C, 0) and let

1 = g1, g2, . . . , gµ ∈ OCn+1,0
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be functions giving a basis for the jacobian algebra O /Jf . We will consider be a good representative
of a miniversal deformation of f of the form

F : B × S → C, F (x, u) = f(x) +

µ∑
i=1

uigi(x) ,

where B is a Milnor ball for C and S is a sufficiently small ball in Cµ,[?]. The set X := F−1(0)
comes with a map π : X −→ S, with Cu as fibre over u ∈ S.

2.1 The critical space Σ

The relative critical set Σ of F is defined to be

Σ =

{
(x, u) ∈ B × S :

∂F

∂xi
(x, u) = 0, i = 0, . . ., n

}
.

It is smooth and the projection π : Σ → S is a µ-fold branched cover: its fibre over u ∈ S consists
of the critical points of F (−, u). As the partial derivatives form a regular sequence

OΣ = OB×S /(∂F/∂x0, . . ., ∂F/∂xn)

is a free OS-module of rank µ. Miniversality of F is equivalent to the statement that the Kodaira-
Spencer map

dF : ΘS → OΣ, ϑ 7→ ϑ(F ) = dF (ϑ)

is an isomorphism. The set X ∩ Σ is the union over u ∈ S of the set of singular points of Cu, and
its image under π is the discriminant, D. For brevity we denote X ∩ Σ by D̃. It is indeed the
normalisation of D.

2.2 D as a free divisor

Let F̄ : (B × S, (0, 0)) → (C× S, (0, 0)) be the unfolding of f corresponding to the deformation F .
Then Σ ⊂ B × Cµ is the (absolute) critical locus of F̄ . We write ∆ = F̄ (Σ) ⊂ C× S for the set of
critical values of F̄ . It is well known that Σ is the normalisation of ∆: it is smooth, and the map
F̄ | : Σ → ∆ is generically one-to-one. Then D = ∆ ∩ {0} × S. As usual, ΘC×S(− log ∆) denotes
the OC×S-module of vector fields on C× S which are tangent to ∆, and ΘS(− logD) denotes the
OS-module of vector fields on S which are tangent to D.

Proposition 2.1. (i) ΘC×S(− log ∆) is the OC×S-module of vector fields on C × S which are F̄ -
liftable to B × S.
(ii) ΘS(− logD) is the OS-module of vector fields on S which are π-liftable to V (F ).

Proof. ([?]) (i) Let ϑ ∈ ΘC×S(− log ∆). Since F | : Σ → ∆ is the normalisation of ∆, there is a
vector field ϑ̃0 on Σ lifting ϑ. For any extension ϑ̃1 of ϑ̃0 to B × S, ωF (ϑ)− tF (ϑ̃1) vanishes on Σ,
and since the jacobian ideal (∂F/∂x1, . . ., ∂F/∂xn+1) is radical, there exists a second vector field ξ
on B × S such that ωF (ϑ̃1)− tF (ϑ̃1 = tF (ξ). Then ϑ̃1 + ξ is an F̄ -lift of ϑ.

Conversely, suppose ϑ̃ is a F̄ -lift of ϑ. Then ϑ̃ must be tangent to Σ, for the integral flows Φ̃t and
Φt of ϑ̃ and ϑ satisfy Φ1◦F̄ = F̄ ◦Φt, showing that Φ̃t defines an isomorphism F̄−1(u) → F̄−1(Φt(u)),
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and must therefore map singular points of F̄−1(u) to singular points of F̄−1(Φt(u)). It follows that
ϑ is tangent to ∆.

(ii) Let i0 : S → C×S be the inclusion u 7→ (0, u). Then D = i−1
u (∆). Now i0 is logarithmically

transverse to ∆, i.e. transverse to the distribution ΘC×S(− log ∆). If F is the standard deformation
f(x) +

∑
i uigi, with gµ = 1, then this transversality is obvious: the vector field ∂/∂t + ∂/∂uµ on

C× S has F̄ -lift ∂/∂uµ, and therefore lies in ΘC×S(− log ∆). Any other miniversal deformation is
parametrised R-equivalent to the standard deformation, so the transversality holds there too.

Identifying Cµ with {0} × Cµ, from the logarithmic transversality of i0 to ∆ it follows that
ΘS(− logD) is equal to the restriction to Cµ of θC×S(− log ∆)

⋂
θC×S(− log({0} × S)), and that

every vector field in ΘS(− logD) extends to a vector field in ΘC×S(− log ∆). Clearly, any lift to
Cn+1 × S of a vector field in θC×S(− log ∆)

⋂
θC×S(− log({0} × S)) must be tangent to V (F ), and

any vector field whose F̄ -lift is tangent to V (F ) must lie in θC×S(− log ∆)
⋂
θC×S(− log({0}×S)).

Therefore we have a diagram

ΘS

dF

��

ΘS(− logD)

dF
F

��

? _oo

0 O
D̃

oo OΣ
oo OΣ

Foo 0oo

(2.1)

where the vertical maps are isomorphisms. This diagram can be used to find a basis for ΘS(− logD).
The germs FdF (∂/∂ui) generate (F )OΣ, therefore if

dF (χi) = FdF

(
∂

∂ui

)
(2.2)

then the χi generate ΘS(− logD). This shows that ΘS(− logD) is a locally free module, so that
D is a free divisor.

2.3 Stratification of D

The discriminant D is stratified in various ways. Of special relevance to us are the local R and K
strata.

Suppose as before that F : B × S → C is a good representative of a versal deformation of f ,
where B is open in Cn+1 and S is open in Cµ. Write fu = F ( , u), and suppose that p1, . . ., pk are
the critical points of fu lying on f−1

u (0). For each point pi, the germ

F : (B × S, (pi, u)) → (C, 0)

is an Re-versal deformation of the germ of fu at pi, by openness of versality. Hence there is a germ
of submersion hi from (S, u) to the base of an Re-miniversal deformation

Gi : (B × Cµi , (xi, 0)) → (C, 0)

of this germ, such that the germ of deformation F : (B×S, (pi, u)) → (C, 0) is isomorphic to h∗i (Gi).
We set

Ri(u) = h−1
i (0).
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This is independent of the choice of miniversal deformation Gi and submersion hi, since any two
choices can be related by a commutative diagram of spaces and maps. Again by openness of
versality, the Ri(u), i = 1, . . ., k are in general position with respect to one another, and we set

R(u) =

k⋂
i=1

Ri(u).

T his is the R stratum through u. It is smooth of dimension µ−
∑

i µ(fu, pi).
If in the above definition we replace F : B × S → C by the projection V (F ) → S, and replace

each Gi by a Ke-miniversal deformation Hi of the hypersurface singularity (Cu, pi), then we obtain
the K -strata Ki(u) and their intersection K (u), the K -stratum through u, which is once again
smooth, by openness of versality, and has dimension µ−

∑
i τ(Cu, pi). Since R ⊂ K , R(u) ⊂ K (u).

If for example the fibre Cu has k A1 singularities and no other singular points, then R(u) =
K (u) and its germ at u coincides with the germ at u of the set of points u′ such that Cu′ has k A1

points and no other singularities.

Definition 2.2. The logarithmic tangent space T logD
u S is the vector subspace of TuS spanned at u

by the logarithmic vector fields.

Proposition 2.3. One has the equality of vector spaces

T logD
u = TuK (u).

Proof. We have the exact sequence

0 → ΘS(− logD) → ΘS → π∗(OD̃) → 0

which gives
ΘS

ΘS(− logD)
' π∗(OD̃)

and so
TuCµ

T log
u D

' ΘS

ΘS(− logD) + mS,uΘS,u
'
⊕
i

T 1
Ke

(fu, xi)

This means that to show
T log
u D = TuK (u)

we need show only one inclusion. If ϑ ∈ ΘS(− logD)u then it has a lift ϑ̃ tangent to V (F ). The
integral flows of ϑ and ϑ̃, ϕt on (S, u) and ϕ̃t on V (F ), satisfy π ◦ ϕ̃t = ϕt ◦ π. It follows that ϕ̃t
maps Cu to Cϕt(u), and therefore for each singular point pi in Cu, the curve germ {ϕt(u) : t ∈
(C, 0)} lies in the set Ki(u) defined above. Hence {ϕt(u) : t ∈ (C, 0)} ⊂

⋂
i Ki(u) = K (u), and

ϑ(0) ∈ TuK (u).

2.4 Isomorphism OΣ → ΩF

A choice of a nowhere-vanishing relative (n+ 1)-form ω ∈ Ωn+1
B×S/S determines an isomorphism

OΣ ' Ωn+1
F , g 7→ gω
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where
Ωn+1
F := Ωn+1

B×S/S/dF ∧ Ωn
B×S/S .

Such an isomorphism leads to many additional structures. First of all, there is a canonical
perfect pairing, the residue pairing,

Res : Ωn+1
F × Ωn+1

F → OS ,

from which one obtains a perfect pairing on OΣ.

〈 , 〉 : OΣ×OΣ → OS .

Furthermore, because Ω1
S and Ω1

S(logD) are OS-dual to ΘS and ΘS(− logD), such a choice of ω
also determines isomorphisms

α : Ω1
S → OΣ and β : Ω1

S(logD) → OΣ

via the formulas

〈dF (ϑ), α(ω)〉 = ω(ϑ), and 〈dF
F

(ϑ), β(ω)〉 = ω(ϑ).

As a result ΘS ,ΘS(− logD),Ω1
S and Ω1

S(logD) are all identified with OΣ and hence with one
another. For example we have the isomorphism k−1 ◦ β : Ω1

S(logD) → ΘS , where k : ΘS → OΣ is
the Kodaira-Spencer map dF .

Note that multiplication by F on OΣ is self-adjoint:

〈g, Fh〉 = 〈Fg, h〉.

As a result, if ǧi, i = 1, . . ., µ denotes the OS basis of OΣ dual to the basis gi = ∂F/∂ui, i = 1, . . ., µ,
then replacing FdF (∂/∂ui) in (2.2) by ǧi, we get generators χ1, . . ., χµ for ΘS(− logD) whose matrix
of coefficients with respect to the ∂/∂uj is the symmetric matrix with i, j entry χij = 〈ǧi, F ǧj〉.

In our calculations in section 7 we always used such a basis. We note that if ω1, . . ., ωµ is the
basis for Ω1(logD) dual to χ1, . . ., χµ then

k−1β(ωi) =
∂

∂ui
, and k−1α(dui) = χi.

3 The Gauß-Manin connection

The study of the Gauß-Manin connection for hypersurface singularities was initiated by Brieskorn
in [?] and has since then developed into a very detailed theory. We can only outline the parts of
the theory that are relevant to our application. For a more detailled accounts we refer to [?], [?],
[?], [?] and the original papers quoted there.

3.1 The cohomology bundle and its extensions

The spaces Hn(Xu) = Hn(Xu;C) fit together into the cohomology bundle

H∗ =
⋃

u∈SrD
Hn(Xu)
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over S rD. It is a flat vector bundle and the associated sheaf of holomorphic sections

H ∗ = H∗ ⊗C OSrD

is equipped with a natural flat connection, the Gauss Manin connection,

∇ : H ∗ → H ∗ ⊗OS Ω1
S\D (3.1)

As ususal, we write
∇ϑ : H ∗ −→ H ∗

for the action of a vector field θ ∈ ΘSrD. The sheaf H ∗ over S rD has various extensions to S.
Most relevant to us is the parameterised version of Brieskorn’s module H ′:

H ′ := π∗(Ω
n
X/S)/dπ∗(Ω

n−1
X/S). (3.2)

A section of H over U ⊂ S is represented by a (relative) holomorphic n-form η on π∗(U) ⊂ X. If
U ⊂ SrD and u ∈ U , the restriction of η to the smooth fibre Xu is a closed form n-form and thus
determines a cohomology class

[η|Xu ] ∈ Hn(Xu)

In this way one obtains an isomorphism H ′(U) → H ∗(U) and thus H ′ can be considered as an
extension of H ∗, that is, there is a map of OS-modules

H ′ −→ j∗H
∗,

which is an isomorphism over S rD. ( j : S rD↪→S is the inclusion.) The sheaf H ′ is a locally
free sheaf of rank µ, but for a general ϑ ∈ ΘS the Gauß-Manin connection map H ′ into a bigger
extension H ′′ ⊃H ′. This second Brieskorn module H ′′ can be defined as

H ′′ := π∗ωX/S/dπ∗(dΩn−1
X/S)

where ωX/S denoted the relative dualising module, [?]. Elements from ωX/S are most conviently
described as residues of n+ 1-forms, that is, as Gelfand-Leray forms. There is an exact sequence

0 −→ H ′ −→ H ′′ −→ Ωn+1
X/S −→ 0 (3.3)

When we restrict to logarithmic vector fields, the connection maps H ′ and H ′′ to itself, so we
have logarithmic connections

∇ : H ′ −→ H ′ ⊗OS Ω1
S(logD)

∇ : H ′′ −→ H ′′ ⊗OS Ω1
S(logD)

extending the Gauss-Manin connection (3.1). (As there is no possibility of confusion, we denote all
these maps by the same name ∇)

The action of χ ∈ ΘS(− logD) on a local section [η] represented by a relative n-form η is given
by the Lie-derivative with respect to a lift χ̃ of χ:

∇χη = [Lieχ̃(η)]
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3.2 H ′ and the cohomology of singular fibres

We have seen that for u ∈ S \D, the restriction of a global relative n-form η to a smooth fibre Xu

determines a cohomology class
[η|Xu ] ∈ Hn(Xu)

If u ∈ D then the fiber Xu is singular, but the form η still can be integrated over n-cycles in Xu

and gives rise to a well defined cohomology class in Hn(Xu). We sketch the argument. Suppose γ1

and γ2 are n-cycles in Cu and Γ is a n+1-chain in Xu with ∂Γ = γ1−γ2. We can write Γ = Γ′+Γ′′

where Γ′ is a n + 1-chain in the smooth part of Cu and Γ′′ = Γ ∩
⋃
iBε(pi), where the pi are the

singular points of Cu. Then ∫
γ1

η −
∫
γ2

η =

∫
∂Γ′

η +

∫
∂Γ′′

η.

The first integral on the right hand side vanishes by Stokes’s Theorem. The contribution
∫
∂Γ′′ η

tends to 0 as ε → 0, as the integrand is regular and one is integrating over ever smaller sets.

In general, if Z is any analytic space with singularities we can look at the de Rham-complex
(Ω•Z , d) of Kähler forms, and integration over p-cycles is well-defined and determines a de Rham-
evaluation map

DR : Hp(Γ(Z,Ω•Z)) → Hp(Z,C)

If Z is a Stein space, then this map is even surjective. The reason is the following: because Z
is Stein, the group at the left hand side is equal to the p-th hypercohomology group Hp of the
deRham-complex (Ω•Z , d). The map of complexes CZ → (Ω•Z , d) (induced by the inclusion map
CZ → OZ) induces a map

α : Hp(Z,C) = Hp(CZ) → Hp((Ω•Z , d)) = Hp(Γ(Z,Ω•Z))

and it is shown in [?], p.141, that DR is a section of the map α, i.e. DR ◦ α = Id. In particular,
DR is surjective.

Propostion (8.5) of [?] provides a relative version of this argument, that we specialise to our
situation of π : X −→ S. For this we look at the (truncated) relative deRham complex

0 −→ OS −→ Ω1
X/S −→ . . . −→ Ωn−1

X/S −→ Ωn
X/S

The cohomology sheaves are π−1OS in degree 0 and in degree n, where it is

Hn := Ωn+1
X/S/dΩX/S ,

a sheaf supported on D̃. The direct image (π∗Ω
•
X/S , d) also has two non-vanishing cohomologies,

namely in degree 0 and in degree n where it is H ′. The two hypercohomology spectral sequences
now produces a short exact sequence

0 −→ Rnπ∗(CX)⊗OS
α−→H ′ β−→ π∗Hn −→ 0

Restriction to a (geometrical) fibre over u gives an exact sequence

0 −→ Hn(Xu) −→ H ′
u −→ π∗Hu −→ 0
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In the middle we have a vector space of dimension µ, at the right hand side a direct sum of vector
spaces of dimension µi, the Milnor numbers of the singularties appearing in the fibre over u. So
indeed

dim Hn(Xu) = µ−
∑

µi

The composition
Rnπ∗(CX) −→ Rnπ∗(CX)⊗OS

α−→ H ′

is for any u ∈ S a section to the deRham-evaluation map

DRu : H ′
s −→ Hn(Xu,C)

Corollary 3.1. For all u ∈ S, the deRham evaluation map

H ′
u → Hn(Xu); η → [η|Cu ]

is surjective.

3.3 The period map

The theory of the period map was developed independently by Varchenko and K. Saito around
the same time and has numerous applications. The basic idea is quite simple. Let us first fix a
relative n-form η and a point u ∈ SrD and a horizontal basis γ1(s), γ2(s), . . . , γµ(s) ∈ Hn(Xs) for
points s in a neighbourhood U of u. The period map

Pη : U −→ Cµ, s 7→ (

∫
γ1(s)

η,

∫
γ2(s)

η, . . . ,

∫
γµ(s)

η)

send a point s to the tuple of periods of the form η. By further parallel transport one obtains a
(multi-valued) map

Pη : S rD −→ Cµ

between spaces of the same dimension µ. The form η is called non-degenerate if it is non-degenerate
at all points u ∈ SrD, which means that Pη is a local isomorphism near u. Of course, this can be
tested by looking at the derivative of this map, which can be identified with the map

∇Pη,u : TuS → H1(Xu), ϑ 7→ [∇ϑη|Xu] ∈ Hn(Xu)

which is the geometrical fibre at u of the sheaf map

ΘSrD −→ H ∗, ϑ 7→ ∇ϑη

This map extends to a sheaf map

ΘS −→ H ′′, ϑ 7→ ∇ϑη

which is an isomorphism in case η is non-degenerate.
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Proposition 3.2. A non-degenerate realtive n-form η gives rise to a commutative diagram

0 −→ H ′ −→ H ′′ −→ Ωn+1
X/S −→ 0

↑ ↑ ↑
0 −→ ΘS(− logD) −→ ΘS −→ O

D̃
−→ 0

(DAVID, COULD YOU REDO THIS DIAGRAM IN xypic?) with exact rows and where the vertical
maps are isomorphisms and where the map at the right hand side is induced by multiplication by
ω = dη.

From this we get immediatly the following

Theorem 3.3. If η is non-degenerate, then for each point u ∈ S one obtains an isomorphism

∇Pη,u : T logDu S −→ H ′
u

The composition with the deRham-evaluation map gives a surjection

DR ◦ ∇Pη,u : T logDu S −→ Hn(Xu)

Its restriction to
TuR(u) ⊂ TuK (u) = T logDu S −→ Hn(Xu)

is an isomorphism.

The last statement follows HERE WE STILL NEED AN ARGUMENT and the fact that both
sides have the same dimension equal to µ(X)−

∑
i µi.

This statement was shown by Varchenko to hold in special cases and conjectured to hold in
general, [?]. A proof, more or less along the above lines, was sketched to us by Hertling, [?].

4 The case of curves

We specialise to the case n = 1, so C := X0 is a plane curve singularity. If C has r branches then
by the formula of Milnor

µ = 2δ − r + 1,

and for u ∈ S r D the fibre Cu := Xu is a smooth Riemann surface of genus δ − r + 1 with r
boundary circles. In the case where C is irreducible, then µ = 2δ and for u /∈ D, Cu is a smooth
Riemann surface of genus δ. For u ∈ D the curve Cu is a singular, say with singularities (Cu, pi),
i = 1, 2, . . . , N then its normalisation C̃u has genus

δ(C)−
N∑
i=1

δ(Cu, pi)
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4.1 Intersection form

For fixed u ∈ S let C∗u = Cu/∂Cu be the closed Riemann surface obtained by shrinking ∂Cu to a
point, and let C̃u and C̃∗u be the normalisations of Cu and C∗u.

The diagram

C̃u
� � //

n

��

C̃∗u

n

��
Cu

� � j // C∗u

gives rise to the diagram H1(C̃u) H1(C̃∗u)
'oo

H1(Cu)

n∗

OO

H1(C∗u)

n∗

OO

'oo

in which the vertical arrows are surjections. Write Iu and Ĩu for the intersection forms on Cu and
C̃u. These are pulled back from the intersection forms on the closed curves C∗u and C̃∗u by means
of the isomorphisms in the preceding diagram. Because n∗ : H2(C̃u, ∂C̃u) ' H2(C, ∂C), it follows
by functoriality that

Ĩu(n∗a, n∗b) = Iu(a, b), (4.1)

Note that the form Ĩu is non-degenerate.

4.2 de Rham version of Iu

The pairing Iu has the following deRham description. We choose a a pair of collars U ⊂ V ⊂ Cu
around the boundary ∂Cu and a C∞ bumb-function, equal to 1 on U and 0 outside V . If η is a
holomorphic (Kähler) 1-form on Cu, it follows from the residue theorem that∫

∂C
η = 0

By integration we can find a holomorphic function α on V with dα = η on V . The form η is
cohomologuous to η̃ := η − dρα and as ρ = 1 on U and there dα = η, it follows that η̃ is a form
with compact support, contained in C \ U . It is holomorphic and equal to η outside V , but only
C∞ on the annulus V \ U . One then has, using Stokes theorem

Iu([η], [η′]) = Iu([η̃], [η′]) = −
∫
∂C
αη′

4.3 Extension to H ∗ and H ′

The pairings Iu on H1(Cu) combine to give a perfect duality

I : H ∗ ×H ∗ → OS

over SrD. Because of its topological origin, the intersection form is horizontal with respect to the
Gauss-Manin connection: for any two sections s1, s2 of H∗,

d
(
I(s1, s2)

)
= I(∇s1, s2) + I(s1,∇s2).

Using a relative version of the above deRham-description of the intersection pairing one obtains
an extension of I, still called I, to H ′:

I : H ′ ×H ′ → OS

11



For two sections η1, η2 of H ′ one has

I(η1, η2)(u) = Iu([η1|Cu], [η2|Cu])

4.4 Pulling back the intersection form

Using the period map one can pull-back the intersection form on H1(Cu) to obtain a 2-form on S.
Let us first start with an arbitrary section s ∈H ∗ over S \D. From is we obtain a 2-form

Ω = s∗I ∈ Ω2
SrD

on S rD by the formula
Ω(θ1, θ2) := I(∇θ1s,∇θ2s)

Proposition 4.1. The form Ω is closed.

Proof. This is ’clear’ as we are pulling back the ’constant form I’, but here is a nice direct calcu-
lation: if a, b and c are germs of commuting vector fields on S then

d(s∗I)(a, b, c) = d
(
I(a, b)

)
(c)− d

(
I(a, c)

)
(b) + d(

(
I(b, c)

)
(a)

= I(∇c∇as,∇bs)− I(∇as,∇c∇bs)

−I(∇b∇as,∇cs) + I(∇as,∇b∇cs)

+I(∇a∇bs,∇cs) + I(∇bs,∇a∇cs) (4.2)

Because a and b commute and ∇ is flat, ∇a∇b = ∇b∇a, and similarly for ∇a∇c and ∇b∇c. This
means that all terms on the right hand side in (4.2) cancel, except the first and last. These cancel
because of the anti-symmetry of I.

Theorem 4.2. ([?]) If s = η is a non-degenerate section of H ′, then Ω is itself non-degenerate
and hence symplectic, and moreover extends to all of S as a symplectic form.

5 Results

In [?] one find the formulation of a principle that the types of degeneration that occur in the fibres
Cu are reflected in the lagrangian properties of the corresponding strata. Our results can be seen
as a vindication of this principle in some special cases.

As before, we will consider the versal deformation π : X −→ S of an irreducible curve singularity,
a non-degenerate section η of the Brieskorn-module H ′ and the resulting symplectic form Ω on S,
obtained by pulling back the intersection form on the fibres H1(Cu).

5.1 The rank of Ω on the logarithmic tangent space

Recall that for a point u ∈ S, the logarithmic tangent space T logDu S ⊂ TuS is the sub-space spanned
by the logarithmic vector fields at u.

Theorem 5.1. The rank of Ω restricted to T logDu S is equal to the rank of Iu on H1(Cu), which is
equal to dim H1(C̃u) = 2δ(C)− δ(Cu).

12



Proof. Let R(u) and K (u) denote, respectively, the right-equivalence stratum and the K -equivalence
stratum containing u. Recall that by 3.3 the period map maps the space TuK (u) surjectively to
H1(Cu); its restriction to TuR(u) ⊆ TuK (u) maps isomorphically to H1(Cu). From 4.3 it follows

that the rank of Ω on T log
u D at u is equal to the rank of the intersection form Iu on H1(Cu), which

is equal to the rank of H1(C̃u), and therefore is equal to µ(C)− 2δ(Cu) = 2δ(C)− 2δ(Cu).

5.2 Coisotropicity of the Severi strata

Recall that a subspace V of a symplectic vector space W is coisotropic if V ⊥ ⊂ V , where V ⊥ =
{w ∈ W : 〈v, w〉 = 0 for all v ∈ V }. A submanifold X of a symplectic manifold M is coisotropic
if for all x ∈ X, TxX is a coisotropic subspace of TxM . A singular subset X of the symplectic
manifold M is coisotropic if Xreg is coisotropic.

Theorem 5.2. All the Severi strata

D(δ) ⊂ D(δ − 1) ⊂ · · · ⊂ D(1) = D

are coisotropic with respect to Ω.

Proof. Suppose that u is a regular point of D(k), so Cu has exactly k ordinary double points as

singularities. As R(u) = K (u) = D(k) near u, the tangent space TuD(k) is the same as T logDu S.
From theorem 5.1 the rank of Ω|TuD(k) is equal to µ − 2k, hence dim KerΩ|TuD(k) = k. But from

the non-degeneracy of Ω it follows that TuD(k)⊥ has dimension equal to the codimension of D(k),
namely k. Thus both sides in the relation

TuD(k)⊥ ⊃ ker(Ωu|TuD(k))

have dimension k, and are therefore equal. It follows that TuD(k)⊥ ⊂ TuD(k). That is, D(k) is
coisotropic.

The principle mentioned above explains this result by simply saying the near a regular point
u ∈ D(k) there are k cycles vanishing at u, which make up an isotropic subspace of in H1. However,
making this into a honest proof is another matter and leads to all the considerations outlined above.

5.3 Equations for the D(k)

Let χ1, . . ., χµ be a basis for for ΘS(− logD), and let ω1, . . ., ωµ be the dual basis for Ω1
S(logD).

Considering Ω as an element of Ω2
S(logD), it can be expressed as the sum

Ω =
∑
i<j

Ω(χi, χj)ωi ∧ ωj .

We denote the skew matrix with i, j’th entry Ω(χi, χj) by [Ω]. Then

∧kΩ =
∑

1≤i1<···<i2k≤µ
Pf([Ω](i1, . . ., i2k))ωi1 ∧ · · · ∧ ωi2k . (5.1)

where [Ω](i1, . . ., i2k) is the submatrix of [Ω] consisting of rows and columns i1, . . ., i2k and Pf denotes
its Pfaffian. The ideal generated by the coefficients of ∧kΩ with respect to the basis ωi1 ∧ · · · ∧ωi2k
of Ω2k(logD) is the same as the ideal Pf2k[Ω] of 2k × 2k Pfaffians of [Ω].
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Theorem 5.3. D(k) = V (Pf2(δ−k+1)[Ω]). In particular, the δ-constant stratum D(δ) is defined by
the entries of [Ω].

Proof. Consider an aritrary u ∈ S. The rank of the matrix [Ω] at u is the rank of Ω restricted to
the space of evaluations at u of the vector fields in ΘS(− logD)u, which is precisely the logarithmic

tangent space T logDu S. Theorem 5.1 states that the rank of Ω on T log
u D at u is equal to 2δ(C) −

2δ(Cu). As the rank of a skew-symmetric matrix is always even and equal to the size of the largest
non-vanishing Pfaffian, it follows that D(k) is precisely cut out by the Pfaffians of size 2(δ− k+ 1)
of the matrix [Ω], i.e. D(k) = V (Pf2(δ−k+1)([Ω]).

A symplectic form Ω on a manifold S gives rise to a Poisson bracket { , } on the sheaf of
functions on S, as follows: Ω determines an isomorphism Ω1

S → ΘS sending a 1-form α to a vector
field α[. Then for functions f, g,

{f, g} = Ω((df)[, (dg)[).

The vector field χf := (df)[ is called the hamiltionian vector field associated to f . If V ⊂ S is a
sub-variety and I(V ) ⊂ OS the ideal of functions vanishing on V , then it is easy to show that for
a regular point x ∈ V one has

TxV
⊥ = {χf (x) : f ∈ I(V )x}. (5.2)

The following is well-known fact:

Proposition 5.4. V ⊂ S is coisotropic if and only if the ideal I(V ) is Poisson-closed:

{I(V ), I(V )} ⊂ I(V ).

For convenience of the reader we include a proof.

Proof. Let x ∈ V be a regular point and v, w ∈ TxV ⊥, f, g ∈ I(V ) two functions with χf (x) = v,
χg(x) = w. Then

Ω(v, w) = Ω(χf (x), χg(y)) = {f, g}(x)

From this we see that {f, g} vanishes at x if and only if Ω(v, w) = 0, which means that TxV
⊥ ⊂

(TxV
⊥)⊥ = TxV , that is, V is coisotropic.

Thus, for each of the Severi strata D(k), the ideal I(D(k)) is involutive. But note that an ideal
defining a coisotropic subvariety is not necessarily involutive; the proof only shows that this holds
if the ideal is radical.

Conjecture 5.5. For all k = 1, 2, . . . , δ (a) Pf2k([Ω]) is involutive. (b) Pf2k([Ω]) is radical.

So by the theorem 5.3 (b) =⇒ (a), as vanishing ideals of coisotropic varieties are involu-
tive.Nevertheless, involutivity of the ideals Pf2k([Ω]) may hold even without being radical.
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6 The symplectic form as Extension

The matrix [Ω] can be considered as an endormorphism of OµS and its cokernel MΩ defines a rank
2 Cohen-Macaulay module on OD, that sits in an exact sequence

0 O
D̃

oo MΩ
oo O

D̃
oo 0oo

In fact, we show that the module M
D̃

has a coordinate independent meaning, depending only on
the choice of ω used in the definition of the period map. As such it represents a special element in
the Ω

D̃
-module

Ext1
D(O

D̃
,O

D̃
)

6.1 Cohen-Macaulay modules

Let M be a maximal Cohen-Macaulay module (MCM) on the hypersurface singularity D defined
by the equation h in the smooth space S. As is well known, the length 1 free resolution

0 Moo OµSoo OµS
Aoo 0oo (6.1)

of M over OS becomes a 2-periodic resolution over OD:

0 Moo OµDoo OµD
Aoo OµD

Boo OµD
Aoo · · ·oo . (6.2)

It is possible to lift B to a matrix over OS such that AB = BA = hIµ. We call such a matrix B
(with entries in OS) a companion matrix to A. Any pair (A,B) with this property is known as a
matrix factorisation of h, and gives rise to a pair of MCM’s over OD, namely CokerA and CokerB.
By multiplying the entries of A by a suitable unit, it is always possible to suppose that detA = hr

for some r ∈ N; r is in fact the rank of M as OD-module.

6.2 A construction

Let Ω be an invertible skew-symmetric µ × µ matrix. Of course, this forces µ to be even, and we
now assume this. The matrix AtΩA is also skew. If the rank of M is 1, then we claim that AtΩA
also presents an MCM over OD. To see this, let Pf(W ) denote the Pfaffian of a skew matrix W ,
and notice that Pf(AtΩA) =

√
det(AtΩA) =

√
(det A)2 = ±h (the second equality only up to

multiplication by a unit in OS). A µ × µ skew matrix W has a “skew-adjugate” matrix W skAdj

such that WW skAdj = W skAdjW = Pf(W )Iµ; thus in our case (AtΩA, (AtΩA)skAdj) is a matrix
factorisation of h.

The existence of the regular companion matrix (AtΩA)skAdj makes possible its explicit deter-
mination: from

(AtΩA)skAdj ·AtΩA = hIµ

working in the field of fractions of OS we deduce

(AtΩA)skAdj = h · (AtΩA)−1 = h · 1

h
AAdjΩ−1 1

h
(At)Adj =

1

h
AAdjΩ−1(At)Adj.

We denote by NΩ the maximal Cohen-Macaulay OD-module CokerAtΩA. The case that con-
cerns us is where A is a symmetric Saito matrix χ of the discriminant D, and Ω is the matrix of the
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symplectic form on the base S of the versal deformation, obtained by pulling back the intersection
form from the cohomology bundle. In this case we call NΩ the intersection module. The symmetry
of χ adds significantly to the picture, as we now describe.

Assume that A is symmetric and consider the following commutative diagram:

0

��

0

��

0

��
OµS
A
��

OµS
ΩAoo

AΩA
��

OµS
=oo

A
��

OµS
q

��

OµS=
oo

p

��

OµS
q

��

AΩoo

0 Moo

��

NΩ
joo

��

M
ioo

��

0oo

0 0 0

(6.3)

where the columns are free resolutions.

Proposition 6.1. The sequence

0 Moo NΩ
joo M

ioo 0oo (6.4)

is exact.

Proof. j is obviously surjective. i is injective because

iq(m) = 0 =⇒ AΩm = AΩAn for some n =⇒ AΩ(m−An) = 0 =⇒ m = An,

so q(m) = 0. The sequence is exact at NΩ because

jpn = 0 ⇐⇒ n = Am for some m ⇐⇒ n = AΩm′ for some m′ ⇐⇒ pn = iqm′ for some m′.

Remark 6.2. If the matrix A is not assumed symmetric, the argument of the proof of 6.1 produces
an exact sequence

0 CokerAtoo CokerAtΩAoo M
ioo 0oo . (6.5)

To express the extension in more invariant terms, we augment diagram (6.3) to

OµS
bχ

~~}}
}}

}}
}}

χ

��

OµS
Ωχoo

χΩχ

��

OµS
=oo

χ

��

bχ

  A
AA

AA
AA

A

ΘS

dF   B
BB

BB
BB

B OµSb

'oo

��

OµS

��

=oo OµSχΩ
oo

b

' //

��

ΘS

dF~~||
||

||
||

0 O
D̃

oo

��

NΩ
oo

��

O
D̃

oo

��

0oo

0 0 0

(6.6)

16



Here b is the isomorphism sending the i’th basis element of OµS to ∂/∂ui. Condensing, this gives a
less coordinate-dependent version of (6.3):

0

��

0

��

0

��
OµS
bχ

��

OµS
Ωχoo

χΩχ

��

OµS
=oo

bχ

��
ΘS

dF
��

OµSb
oo

p

��

ΘS

dF
��

χΩb−1
oo

0 O
D̃

oo

��

NΩ
joo

��

O
D̃

ioo

��

0oo

0 0 0

(6.7)

6.3 Invariance

We show that the extension in the bottom row of diagram (6.7) is independent of the choices
involved in its construction, by describing the construction in a coordinate free way. We use the
double duality isomorphism described in Subsection ??,

Ω1(logD)
Φ // ΘS

defined by

〈dF (Φ(ω)),
1

F
dF (v)〉 = ω(v) for all v ∈ ΘS(− logD).

We also use “contraction by Ω”,
E : ΘS → Ω1

S

defined by E (χ) = ιχ(Ω), and the inclusions

ΘS(− logD)
i // ΘS

and

Ω1
S

j // Ω1(logD) .

Lemma 6.3. We have the following equalities of matrices:

χ = [i]B∂ χtΩχ = [Φ E i]B∂ χ = [Φj]d∂

where B is the basis χ1, . . ., χµ of ΘS(− logD), ∂ is the basis ∂/∂u1, . . ., ∂/∂uµ of ΘS, and d is the
basis dx1, . . ., dxµ of Ω1

S.

Proof. The first equality is the definition of the matrix χ. For the second, as observed above
χΩχ = [E i]Bω where ω is the basis ω1, . . ., ωµ of Ω1(logD). Since [Φ]ω∂ is the identity matrix, the
second equality follows. For the last equality, recall that by definition of Φ,

〈dF (Φ(dui)),
1

F
dF (v)〉 = dui(v)
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for all v ∈ ΘS(− logD). In particular this is true if v = χk, so, since we have chosen χk so that
1
F dF (χk) is the k’th member of the basis Ě1, . . ., Ěµ of OΣF dual to the basis E := ∂F

∂u1
, . . ., ∂F∂uµ ,

we have

〈dF (Φ(dui)), Ěk〉 = 〈dF (Φ(dui)),
1

F
dF (χk)〉 = dui(χk).

By definition of “dual basis”, this means that

dF (Φ(dui)) =
∑
k

〈dF (Φ(dui)), Ěk〉Ek =
∑
k

dui(χk)Ek

=
∑
k

dui(χk)dF

(
∂

∂uk

)

= dF

(∑
k

dui(χk)
∂

∂uk

)
.

But by symmetry of the matrix of coefficients χ, we have dui(χk) = duk(χi), so

dF (Φ(dui)) = dF

(∑
k

duk(χi)
∂

∂uk

)
= dF (χi).

As dF : ΘS → OΣF is injective, this means that

Φ(dui) = χi.

Using these equalities, and omitting inclusions i and j to avoid clutter, diagram 6.7 becomes

0

��

0

��

0

��
Ω1
S

Φ

��

ΘS(− logD)
Eoo

ΦE
��

ΘS(− logD)
=oo

� _

��
ΘS

dF
��

ΘS
=oo

��

ΘS

dF
��

ΦEoo

0 OΣ0
F

��

oo NΩ

��

oo OΣ0
F

��

oo 0oo

0 0 0

(6.8)

showing that provided the Gorenstein pairing on OΣF , and therefore Φ, are chosen canonically, the
extension in the bottom row of the diagram depends only on F and on the symplectic form.
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6.4 Calculation of Ext groups

As before, D ⊂ Cµ is a free divisor with symmetric Saito matrix χ, and Gorenstein normalisation
D̃. We pick a symmetric presentation Λ for O

D̃
over OD, with respect to a generating set g1, . . ., gµ

for O
D̃

. In the case where D is the discriminant, then we can take Λ = χ. We denote by C the

conductor ideal in OD and in O
D̃

. Over O
D̃

, C is a principal ideal, since D̃ is Gorenstein; it is
generated by the submaximal minor m1

1 of Λ, if g1 = 1.

Lemma 6.4. (i) Both Ext1D(O
D̃
,O

D̃
) and Ext2D(O

D̃
,O

D̃
) are O

D̃
/C -modules.

(ii) Ext1OD(O
D̃
,O

D̃
) '

{OD̃ -syzygies of g1, . . ., gµ}
O
D̃
·{OD -syzygies of g1, . . ., gµ}

;

(iii) Ext2OD(O
D̃
,O

D̃
) ' O

D̃
/C .

Proof. Let K• denote the free resolution

0 O
D̃

oo OµD
poo OµD

Λoo OµD
ΛAdj
oo OµD

Λoo · · ·oo (6.9)

Identifying HomOD(OD,OD̃) with O
D̃

, ExtjOD(O
D̃
,O

D̃
) is the j’th cohomology of the complex

HomD(K•,OD̃) equal to

0 // Oµ
D̃

Λ // Oµ
D̃

Λadj
// Oµ

D̃

Λ // · · ·

where we use the fact that Λt = Λ and (Λadj)t = Λadj. The modules and differentials in the complex
are O

D̃
-linear, so both Ext1 and Ext2 are O

D̃
-modules.

Now assume that g1 = 1. Let mi
j be the signed (i, j) cofactor of Λ. The symmetry of Λ, and

the fact that in O
D̃
mi
jgk = mk

j gi for 1 ≤ i, j, k ≤ µ (by Cramer’s rule – see [?]), mean that

mi
j = m1

1gigj , so the i, j entry in Λadj, as an element in O
D̃

, is m1
1gigj . As m1

1 is not a zero-divisor
on O

D̃
,

ker Λadj = {(a1, . . ., aµ)t ∈ Oµ
D̃

:
∑
i

aigi = 0}.

Meanwhile the image of Λ is the O
D̃

-submodule of Oµ
D̃

generated by the columns of Λ. This proves

(ii).
For Ext2, note that ker Λ contains the (free) O

D̃
-submodule O

D̃
g of Oµ

D̃
generated by g :=

(g1, . . ., gµ)t. If h := (h1. . ., hµ) ∈ ker Λ then h− h1g ∈ ker Λ, and has 0 as first entry. This implies
that the matrix Λ with first column deleted kills h − h1g with first row deleted. Since m1

1 is not
a zero divisor on O

D̃
, we must have h − h1g = 0. Thus ker Λ = O

D̃
g. As Im(Λadj) = m1

1g, the
statement for Ext2 follows.

It is clear from (ii) and (iii) that both Ext1 and Ext2 are annihilated by C .

Proposition 6.5. Ext1D(O
D̃
,O

D̃
) is a maximal Cohen-Macaulay module over O

D̃
/C presented by

the matrix Λ̃ := Λ with first row and column deleted.
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Proof. Let e1, . . ., eµ be standard generators of the free module OµD projecting to g1, . . ., gµ in the
presentation of O

D̃
over OD. As O

D̃
-generators for the module of O

D̃
-syzygies of g1, . . ., gµ we can

take sk := g1ek − gke1 for k = 2, . . ., µ. For if
∑

j αjgj = 0 is any O
D̃

relation among the gj , then

α2s2 + · · ·+ αµsµ = −
µ∑
j=2

αjgje1 +

µ∑
j=2

αjej = α1g1e1 +

µ∑
j=2

αjej =

µ∑
j=1

αjej ,

the last equality because g1 = 1. Denote the class of sk in Ext1
D(O

D̃
,O

D̃
) by s̄k. Each OD-syzygy

among the gi
λ1
je1 + · · ·+ λµj eµ,

gives rise to the relation
λ2
j s̄2 + · · ·+ λµj s̄µ = 0 (6.10)

among the s̄k, since

λ1
je1 + · · ·+ λµj eµ =

(
λ1
j + λ2

jg2 + · · ·+ λµj gµ
)
e1 + λ2

j (e2 − g2e1) + · · ·+ λµj (eµ − gµe1)

= λ2
js2 + · · ·+ λµj sµ

(for the last equality we have used the facts that g1 = 1 and that
∑

i λ
i
jgi = 0).

We claim that every O
D̃

-relation among the s̄k in Ext1
D(O

D̃
,O

D̃
) is an O

D̃
-linear combination

of the relations (6.10), for j = 2, . . ., µ. If

α2s̄2 + · · ·+ αµs̄µ = 0 (6.11)

is any such relation, then by 6.5(ii), α2s2 + · · ·+αµsµ is an O
D̃

-linear combination of OD- syzygies
of the gi, and thus equal to

∑
i βi(λ

1
i , . . ., λ

µ
i ) for some β1, . . ., βµ ∈ OD̃. That is,

−g2 −g3 · · · · · · −gµ
1 0

...
... 0

0 1 0
... 0

...
...

...
...

...
0 · · · · · · 0 1




α2
...
...
αµ

 = Λ



β1
...
...
...
βµ


(6.12)

Delete the first row of (6.12): we getα2
...
αµ

 = β1

λ
2
1
...
λµ1

+· · ·+βµ

λ
2
µ
...
λµµ

 = (β2−β1g2)

λ
2
2
...
λµ2

+· · ·+(βµ−β1gµ)

λ
2
µ
...
λµµ

 = Λ̃

β2 − β1g2
...

βµ − β1gµ

 .

The second equality here simply uses the fact that Λg = 0 to express the first column of Λ as a
linear combination of the remaining columns.

We have shown that Ext1
D(O

D̃
,O

D̃
) is presented by the matrix Λ̃. Since (det Λ̃)O

D̃
= C ,

Ext1
D(O

D̃
,O

D̃
) = Coker Λ̃ is a maximal Cohen-Macaulay O

D̃
/C -module.
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In [?] it is shown that if n : D̃ → D has corank 1 then CokerΛ̃ ' π∗OD2(n), where, by D2(n),
we mean the double-point scheme of the map n:

D2(n) = closure{(x1, x2) ∈ D̃ × D̃ : x1 6= x2, n(x1) = n(x2)}.

The isomorphism fails if n has corank > 1. The map n : D̃ → D, normalising the discriminant in
the base of a versal deformation, has corank 1 exactly for the Aµ singularities. Thus, for the Aµ,
and only for these, Ext1

D(O
D̃
,O

D̃
) ' OD2(n).

7 Computations and Examples

It was described in [] how the symplectic form Ω can be computed in the case of irreducible quasi-
homogeneous curve singularities. The projective closure of such a curve has a unique point at
infinity ∞.

Proposition 7.1. Let C be a curve, ∞ ∈ C a smooth point and ω, η two meromorphic differential
form, holomorphic on C \ {∞}. Then the intersection form of the cohomology classes [ω], [η] ∈
H1(C) is

I([ω], [η]) = 2πiRes∞(αη)

where α is a meromorphic function in a neighbourhood of ∞ with dα = ω.

Proof. Choose two small open discs U ⊂ V ⊂ C around∞, and a C∞ bump function ρ on C, equal
to 1 on U and 0 outside V . Choose an α meromorphic on V with dα = ω. Then ω− d(ρα is a C∞

compactly supported form, cohomologous to [ω]. Using ω ∧ η = 0, we find

I([ω], [η]) = −
∫
C
d(ρα)η = −

∫
U
d(ρα · η)

and by Stokes theorem

−
∫
U
d(ρα · η) = −

∫
∂U
αη

which, noticing the reverse of orientation in the boundary, gives the above formula.

This proposition can be used to calculate intersections using Laurent-series exapansions. If the
curve C is given by an affine equation f(x, y) = 0 and has a single point at infinity, we can find a
Laurent parametrisation of C around ∞

x(t), y(t) ∈ C[[t]][1/t]

If ω = A(x, y)dx and η = B(x, y)dx are the differential forms on C, then by substitution we obtain
expansions

ω = a(t)dt, η = b(t)dt

where a(t), b(t) ∈ C[[t]][1/t] are Laurent series. Integrating up one we find

α(t) =

∫
a(t)dt ∈ C[[t]][1/t]

and can compute the cohomological intersection as:

I([ω], [η]) = Res0α(t)b(t)dt

Proposition 7.2. ([?]) Suppose that f is quasihomogeneous. Then for ω = dx ∧ dy, the period
map Pω is non-degenerate.
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Case A4

We consider the versal deformation of A4 given by

F (x, a, b, c, d) = x5 + ax3 + bx2 + cx+ d.

We take the symmetric basis for ΘS(− logD) with Saito matrix

χ :=


10a 15b 20c 25d
15b −6a2 + 20c −4ab+ 25d −2ac
20c −4ab+ 25d −6b2 + 10ac −3bc+ 15ad
25d −2ac −3bc+ 15ad −4c2 + 10bd

 (7.1)

The symplectic form pulled back by the period mapping induced by the 1-form ydx is

Ω = ada ∧ db+ da ∧ dd+ 3db ∧ dc. (7.2)

Therefore the ideal of entries of the matrix χΩχ, defining the δ-constant stratum D(2), is generated
by

a4 +
27

4
ab2 − 9a2c+ 20c2 − 25

2
ad, a3b+

27

4
b3 − 9abc− 10a2d+ 50cd (7.3)

and

a3c+
27

4
b2c− 4ac2 − 20abd+

125

4
d2

Case A6

A versal deformation of A6 is given by

F (x, a, b, c, d, e, f) = x7 + ax5 + bx4 + cx3 + dx2 + ex.

We take the basis of ΘS(− logD) with Saito matrix

2a 3b 4c 5d 6e 7f
3b −10

7 a
2 + 4c −8

7ab+ 5d −6
7ac+ 6e −4

7ad+ 7f −2
7ae

4c −8
7ab+ 5d −12

7 b
2 + 2ac+ 6e −9

7bc+ 3ad+ 7f −6
7bd+ 4ae −3

7be+ 5af
5d −6

7ac+ 6e −9
7bc+ 3ad+ 7f −12

7 c
2 + 2bd+ 4ae −8

7cd+ 3be+ 5af −4
7ce+ 4bf

6e −4
7ad+ 7f −6

7bd+ 4ae −8
7cd+ 3be+ 5af −10

7 d
2 + 2ce+ 4bf −5

7de+ 3cf
7f −2

7ae −3
7be+ 5af −4

7ce+ 4bf −5
7de+ 3cf −6

7e
2 + 2df


and symplectic form

Ω =



0 −3a2 −c −6b 9a 0 −3
3a2 + c 0 −5a 0 −5 0

6b 5a 0 −15 0 0
−9a 0 15 0 0 0

0 5 0 0 0 0
3 0 0 0 0 0


Each of the ideals Pf2` is Poisson-closed, and defines a Cohen-Macaulay variety of codimension
3− `+ 1.

3. For A8, each of the ideals Pf2` is Poisson-closed, and defines a Cohen-Macaulay variety of
codimension 4− `+ 1.

22



7.1 Case E6

A versal deformation of E6 is given by

F (x, y, a, b, c, d, e, f) = x3 + y4 + axy2 + bxy + cy2 + dx+ ey + f.

We take the basis of ΘS(− logD) with symmetric Saito matrix χ equal to

2a 5b 6c 8d

5b −a4
6 − 4ac+ 8d a2b

2 + 9e −a3b
12 −

3bc+ae
2

6c a2b
2 + 9e −5b2+2a2c+10ad

3 +7ab2

12 −
4a2d

3 + 12f

8d −a3b
12 −

3bc+ae
2

7ab2

12 −
4a2d

3 + 12f −a2b2

24 + 4cd− 7be
2 + 6af

9e ab2−a3c
6 + a2d−9c2

3 + 12f 7abc
6 −

13bd+4a2e
3

5b3−a2bc
12 − 7abd

6 −
3ce
2

12f abd
6 −

a3e
12 −

3ce
2 −8d2

3 + 7abe
12 − 2a2f 10b2d−a2be

24 − 4ad2

3 − 9e2

4 + 6cf

9e 12f
ab2−a3c

6 + a2d−9c2

3 + 12f abd
6 −

a3e
12 −

3ce
2

7abc
6 −

13bd
3 −

4a2

3 e −8d2

3 + 7abe
12 − 2a2f

5b3−a2bc
12 − 7abd

6 −
3ce
2

10b2d−a2be
24 − 4ad2

3 − 9e2

4 + 6cf
4b2c

3 −
a2c2

6 + 8acd−8d2−5abe−6a2f
3

bcd
2 + 5b2e−a2ce

12 + 5ade
6 − 3abf

bcd
2 + 5b2e−a2ce

12 + 5ade
6 − 3abf −4cd2

3 + 11bde
6 − a2e2

24 − b
2f − 2adf


(7.4)

The symplectic form Ω has matrix

0 − 1
15ab

1
5c

2
15a

2 0 1
5

1
15ab 0 0 0 1

2 0
−1

5c 0 0 1 0 0
− 2

15a
2 0 −1 0 0 0

0 −1
2 0 0 0 0

−1
5 0 0 0 0 0

 (7.5)

The ideal I of entries in χΩχ is Cohen-Macaulay of codimension 3, and Poisson-closed. The ideal
J of 4× 4 Pfaffians is also Poisson closed, and has codimension 2 but projective dimension 3.

5. The following table shows the betti numbers (to be read from left to right) of minimal
free resolutions of the ideals of Pfaffians, Pf2`, of the matrix χΩχ for singularities of type A2k for
1 ≤ k ≤ 4.

` A2 A4 A6 A8

1 1 3, 2 6, 8, 3 10, 20, 15, 4
2 − 1 5, 4 15, 24, 10
3 − − 1 7, 6
4 − − − 1

(7.6)
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